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INTRODUCTION

The Naval Ordnance Laboratory (NOL) has been engaged in a
cooperative bomb research program with the Royal Aircraft

Establishment (RAE) and the Australian Veapons Research Estadblishment

(WRE). This effort was undertaken primarily to ascertain the
suitability of six-degree-of-freedom digital computer trajectory
programs for predicting the motion of free-fall weapons, A study
of this type became feasible with the establishment of ihe
instrumented bomb research program of the Weapons Research
Establishment., As a result of joint meetings among representatives
of NOL, WRE and RAE a mutual effort was agreed upon., Within the
frame work of this agreement, it was NOL's responsibility to make
the required wind-tunnel measurements and to perforam some of the
trajectory computations.

In addition to comparing the digital computer trajectory
calculations with data obtained from the instrumented free-fall
stores, it was also decided to extend this cooperative effort to
a study of less conventional stabilizers. These stabilizers would
include freely spinning cruciform tails, freely spinning monoplane
tails and split-skirt tails,

This report presents the results of Magnus wind-tunnel
measurements of fixed and freely spinning cruciform stabilizers,
freely spinning monoplane stabilizers and split-skirt stabilizers,
Other reports present static measurements and damping-in-piteh
measurenments orn all configurations,

SYMBOLS
cp center of pressure
C pitch-moment coefficient, Hy/QSd
Cn yaw-moment coefficient, MZ/QSd
c, Magnus.moment derivative, aCn/a(pd/2V;)
P
C, second-Magnus moment derivative, azcn/a(pd/zv.)aa
pev
Cy yaw-force coefficient, Fy/QS
C

Magnus-force derivative, an/a(pd/zvo)
1l
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second Nagsus-force derivative, 3%Cy/3(pd/2Ve)ac
reference length, maximus body diameter
compoaent of serodyoamic force along y axis
NEagmus force vector
wmit vectors along the x, 5, Z axes
dach msusber
Nagaus-moment vector
pitchkiag moment, momernt about z axis
spia rate, of body about body x axis
reduced spic rate, pd/2V,
stageation pressure
dymamic pressure, 1/2oV,2
distance from center of gravity to center of preasure
gas constant for air
Reynolds susber (based upon body length)
reference area, vd2/4
temperature
free-stream velocity

body acis from center of gravity to body vertex
along iongitudinal axis of symmetry

body axis orthogonal to x axis and normal to
angle-of-attack plane

angle of zttack, angle between x axis and V, vector
dezsity of frce siream

angle of fin cant
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DESCRIPTION OF CONFIGURATIONS

Table 1 la3ts the various configurations which were considered
for both wind-tunnel and full-scale free-fall testing. All
configurations used the same basic forebody with the exception
of the addition, in some cases, of a yaw probe, The main distinction
axong the various configurations is in the stabilizer. ZEach shape
in Table 1 is designated by a letter, In the case of the cruciform
and mcnoplane stabilizers, the litexal designation is followed by
a symbol to indicate the angle of fin cant. Thus, B84 refers to
a freely spinning cruciform tail with a four-degree fin cant,
Whether the monoplane or cruciform stabilizer is used, all fins
have identical cant angles.

In this report Magnus wind-tunnel measurements are given for
corfigurations A, B, C and G, Because the making of Magnus
measurements is a rather lengthy procedure it became necessary to
reduce the number of originally proposed configurations to fit
within a tractuble test program, Therefore, the originally
proposed shapes were reexamined in the light of tactical advantages
and possible operational difficulties. Of course, there were also
experimental problems - both in wind-tuanel and free-fall tests -
that also influenced the final evaluation,

Any test program would heve to include the fixed cruciform
stabilizer (designated as A) since this configuration is an
operational free-iall store. Further, these Magnus data would be
added to a large store of static and dynamic (pitch damping and
roll damping) data already in existence, The freely-spinning
cruciform stabllizers (configurations B) were retained because
this stabilizer had previously shown great promise - both in
computer simulations and in the free-fall portions of the program -
in avoiding yaw-roll resonance problems, In evaluating the fixed
split-skirt stabilizers (configurations C and E) it was felt that
Magnus measurements, made at a single skirt opemning would be
sufficient, This stablilizer has the tactical advantage of providing
a variable drag capakility (by changing the skirt opening) in a
single low-drag carriage. However, it was felt that the additional
mechanical complexity needed to deploy and lock the skirts would
reduce the attractiveness of the split-skirt from an operational
point of view, (It also proved impossible to prevent stabilizer
fracture under the high spin rates required in a Magnur *est,)
Thus, the tests were limited to a skirt opening of 10 degrees
(configuration C), The freely spinning split-skirt stabilizers
(contigurations D and F) were examined briefly at the onset of
the program and were eliminated because of mechanical complexity.
No wind-tunncl models or free..fall stores were constructed,

3




AP R T e et aN s T Y "

R TR

AR TSN P S VT TSR, W Ve DO 3

WA W SBWAL , bp I

ey S

- -~

NOLTR 69-214

The frecly spinning monoplane stabilizer (configuratior G)
was tested hotn in the wind tunnel and in full.scale free fall,
This stabilizer is formed from the freely spinniung cruciform by
renoving twe opposing panels, This stabllizer has all the advantages
of the freely spivning cruciform. 7The resoval 62 two panels makes
this configuration attractive from the ;<~iat of view of stomge.

Wind~-tunnel models of the crucifora and split-skirt stabilizers
are shown in Figure 1, The lower figure presents configuratior A,
or the fixed cruciform stabilizer. The removal of 3 small set
screw in the model permits the tail to freely spin relative to
the foxrabody. The result is the freely spinning cruciform stabilizer
or configuration B, Configuration B is converted into configuratioa
G, the freely spinning monoplane, by removing two opposing
stabilizer panels and replacing these with blanks,

The upper figure depicts configuration C or, the split-skirt
stabilizer at a 10-degree opening, The split-skirt stabilizer mxy
be formed from the fixed cruciforam configuration by removing 1.75
calibers of the aft section of the body and replacing this with a
cylindrical section of the same length, This cylindeyr is then
split axially into four equal petals, These petals are rotated
about a forward hinge line to make the desired angle with the
body's axis of symmetry. As bhas been mentioned, only tke peotal
configuration making a 10-~degree angle with the tody‘s center linc
was tested,

Figures 2 and 3 presenti some of th> dimensional details of the
full-scale cruciform and split-skirt stores, respectively, The
wind-tunnel models were 3.5 inches in diameter {about ©0,18 of full
scale).

EXPERIMENTAY. METHOD

All Magnus wind-tunnel measurements were carried out in the
Naval Ship Research and Development Center's 7 x 10-Foot Transonic
Wind Tunnel, This facility is a continuous flow wind tunnel
capable of operating up to 1,5 atmospheres, or up to a Mack number
of 1,17, Some of the more significant flow capabilities of this
facility are presented in Figure 4.

It wil) be noted in Figure 4 thut there are three operational
medes for this transonic tunnel, The table given below shows the
Mach number capability in each of these modes:
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Total Pressure
Mode Upper Mach Number {atacspheres)
Test Section Vented 0.70 1.0 to 1.5
Settling Chamber Vented 1.00 1.0
Settling Chamber Evacuated 1.17 0.5 to 1.0

The Magnus effect, at least on the forebody, has its origin
in the boundary layer (see Ref. (1)), Therefore, it was felt to
be essential to test over 2 range of Reynolds numbers, This
requiresent, coupled with a Mach number range of 0,60 to 0.95,
led to the decision to use the vented and evacuated modes of wind-
tunnel operation,

Also contained in Figure 4 is the altitude eguivalent of the
test coaditions., If the atmosphere is assumed to be isothermal
and composed as am ideal gas, it is a straightforward mactter to
show tiat the equivalent altitude, h, may be expressed as a fuaction
of density, p, by

h = BT, 1n(2) (¢)]

where T is temperature, R the gas constant for an ideal gas and
the subscript naught refers to reference, or stagnation, conditions,

If the deusity ratio.- ¥ach number relationship for a2 diatomic
gas is used, Equaticn (1) becomes,

h = T 10(1 + gz)_ (2)

The total temperature condition for the NSRDC facility under
evacuated znd vented conditions is 535-degrees Rankine,

The most important single instrument used in making successful
Mo.gnus measurements is the wind-tunnel balance, In evaluating
the design of a Magnus balance it is necessary to consider the
nature of the Magnus effect, The Magnus fcrce acts normal to the
angle-of-attack plane; or that plane defined by the free-stream
velocity vector and the hody's longitudinal axis, The Magnus force,
therefore, must be measured in the presence of an orthogonal force
{normal force) which is at least ten times greater in magritude, In
addition, these rmeasurements must be made on a body which is spinning.

5
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l At the heart of the Magnus balarce is the Magnus bridge. These
bridges are a special gage section designed to measure the low-
level Magnus loads, and to make these measurements with low inter-
action from the orthogonal normal force. The details of the Magnus
bridge are shown in Figure 5, which shows a yaw-plane view of the
forwmrd-gage section of the lagnus balance, It will be noted that
the gages for measuring yaw are mounted on the eccentric columns.
These columns are attached to the balance proper by means of pin
joints,

E

Assume that the balance is subject to a yaw {or in this case
Magnus) moment such that the upper fibers are in compression. Due
to the eccentric loading on the flexure, secondary bending in
addition to that imposed on the balance proper will mechanically
amplify the elastic distortion due to the Magnus moment., That is,
if the bending experienced by a point on the flexure is compared
with that at a point on the balance proper, equidistant from the
elastic axis, the puint on the flexure will be at about a five
times greater stress, Because the flexure is attached to the
balance by means of & pin joint, there is low yaw-pitch interaction,

In order to make Magnus measurements it is necessary to mount
the model on the balance in such a way that the model is free to
spin about its longitudinal axis, Torcoue can come from a
oneumatic or electric motor mounted inside the model; or, obtained
4 oy cacting the model's tail fins,

, For the Magnus measurements on the fixed cruciform and split-
1 skirt stsbilized configurations, the model was supported at two

4 points by ball bearings. A variable frequency electric motor spun
the model ahout its longitudinal axis, (Figure 6 is an illustration
[ of this support and drive system.) Because of the large contribu-
1 tion from the fins to aerodynamic damping, it was necessary to
provide a 3.to-l speed-reduction gear box, In the case of the
split-skirt configuration it was possible o omit the gear box
because of the much lower torque requirements, For the freely
spinning stabilizer tests, torque was generated by differential
fin cant, Because of the versatile model design it was necessary
only to release a set-screw in the rear of the model to uncouple
the stabilizer from the forebody. The forebody was locked to the
' balance by revlacing the gear box with a dummy unit which keyed
the forebody tc the balance,

Figures 7 and 3 illustrate the cruciform and split-skirt
stabilizer configurations mounted in the NSRDC transonic facility,
Figure 9 presents the sting model base geometry for both the cruciform
and split-siirt stabilizers, The dimensions given here are for
the wind-tunnel models used at NSRDC,

6
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The technique used for making Magnus measurements will be
briefly outlined nmext. After the tunnel flow had been established
the model was brought to angle of attack. In the case of tbke fixed
crucifors (configuration A) and split-skirt (configuration D) the
electric motor provided the desired spin rate, While the spin
rate was held constant (to within 2 percemt) the gage readings
were sampled 150 times. These readings were then averaged to give
a single load measurement., A data point for a given configuration
is defined by the triplet of numbers: angle of attack, spin rate
and Mach number, This averaged load is then a single data point,
The model spin rate is changed successively throughout its range.
Once the range of spin rates have been spanned, the angle of attack
is changed and the entire procedure is repeated.

A similar approach is used for the freely spinning cruciform
(configuration B) and freely spinning moncplane (configuration G)
stabilizers, A modification in the order of spin rate, angle of
attack and Mach number variation is necessary because the fin cant
is used for torque generation, This requires that a sing’e measure-
ment be made at each angle of attack and Mach cumber. It iz necessary
to make measurements over the entire Mach number. . sancle-of-atiack
range with a freely spinning stabilizer of Zixed fin cant, Spin
rate will vary somewhat with changes in Ma~h number and angle of
attack due to changes in fin effectiveness .2 roil damping, The
model is then fitted with a fin of geometrically identical plan-
form but a different angle of fin cant, Again measurements are
made at all values in the angle-of-attack-Mach number range, In
these tests fins having cant angles of 2 and 4 degrees were used,

DATA REDUCTION

The Magnus force, Fy, will be defined as a force depending
upon body spin rate and angle of attack, and acting normal to the
plane established by the spin vector, p, and the free-stream velocity
vector, Ve, Mathematically this force, Fy, and its corresponding
moment, Hy, caa be expressed as

- v.
fi = k(p x V:) 3)
and
ﬂu - k[f x ® : v;)] (4)
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where k is a scalar constaut for a given set of flow conditicas;

¥ i3 the vector distance from the ceuter of gravity to the lagnus
center of pressure, along the body's axis of symmetry; and, P is

the spin-rate vector defined along the axis of symmetry.

All forces and moments are referred to the conventional aero-
ballistic body axis system; that is, an axis system which is fixed
to the body and shows all its rotational and translational motion
except spin, In this axis system the x axis is forward along the
axis of symmetry; the y axis is to the right when the store is
viewed along the positive x axis; the z axis completes a right-
kanded triad, The origiz of this axis system is at the moment
1reference center taken, in this case, to be the body mid-point.
Unit vectors along the x, y, z axes '111 be defined as lx, ly, lz.
The wind-tunnel constra’nts are such that the x, z plane is vertical;
and, that this plane contains the flow velocity vector,

Since p = p Ix, Ve = (Vocosq)lg + (Vasing)1;, Bquation (3) may
be rewritten as

Fu = - x[psinaly = Fyly (5)

where the side force, Fy, is equal to -kpV,siny. This relationship
demonstrates that the Magnus force is an odd function of the angle
of attack and spin rate, The Magnus moment equation also may be
rewritten using the components of the spin-rate and free-stream
velocity vectors., That is,

My = - x(prsing) Tz = M1, (6)

where the yawing moment, Mz, is equal to -kpr siny, It can be seen
from Equation (6) that the Magnus moment is an odd fuactionm in
center of pressure location, spin-rate and angle~of-attack. For
exanple if the Magaus center of pressure is ahead of the

center of gravity, the Magnus moment would be negative (nose to the
left) .

The yaw~force and yaw-moment coefficients are defined as;

F
ag-cy and;zs.a.-cn (7)

The above coefficients depend upon the body pressure distribution,
which in turn depends upon the compressibility, viscosity and
unstecadiness of the flow field, To indicate the degree of simulation

8
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of tkese effects it is necessary to present coefficients as functioms
of the appropriate similarity parameters.

Since the free-stream velocity is in the vicinity of the
speed of soun?, it is necessar, to regard the medium as compressible,
Simulation of comdressibility effects is assured by testing at
identical free-flight Mach numbers., Also, since the Magnus effect
on the forebody ~riginates ertirely in the boundary layer, it is
necessary to test at the anticipatzd Reynolds numbers to simulate
viscous effects, Finally, since each surface element on a steadily
spinning body experiences a cyclically changing flow field, the
test must be made at a paramcter whick matches flow unsteadiness,
In Magnus tests this flow unsteadiness parameter is designated
as the reduced frequency, ¥, Testing at identical reduced frequencies
assures a matehirg of the flow angularity at similarily located
surface eleme:ts on geometrically similar bodies, Thus, it will
be postulaie’ .n a Magnus test that the coefficients must be
expressed as functions of Mach number, Reynolds number and reduced
frequency, as well as body angular attitude.

If the Magnus force is assumed to te an analytic function of

angle of attack and reduced frecquency, the yaw-force coefficient
can be expanded in a “runcated Taylor series in 4 and ¥, as;
_2‘; v2) @)

Cyle, B = Cy(0, o)+-‘ia+—l'fs+ ( a2+“§
[£7

where all derivatives are evaluated at # and P equal to zero.
Since,

Cy(0, 0) = C (0, p) = Cyla, 0) =0 (9)

it follows that all but the cross derivatives vanish, Thus,
Ejuation (8) becomes, as a first approximation,

=%y o ~
Cy(r, D) Py off = Cy Yoo Pr. (10)

A similar relationship for the moment coefficient, C,, would be

Cp = 20y Cp. P (11)
B e—— = .
R T
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The terms on the right in Bguations {10) and (11) are tke
familiar Magnus force and moment derivatives, respectively, for
linear aerodynamics. It should be noted that Equations (10) ana
(11) are compatible with Equations (5) and (6) for small angles
of attack.

Before coming to grips with an analytic description of the
problem’s nonlinearities it is important to recall the metbhods of
data acquisition, Side-~force and yawing-moment measurements were
made whiie the body was spinoning at a constant rate and at a
fixed angle of attack and Mach number. After measurements were
made at six discrete spir rates, the angle of attack was changcd
and the process repeated.

Such a procedure suggests rewriting Equation (7) as,

AC(n) 1 3“Cy(w) 1 32C, ()
Cylo,®) = =X AS & ”2*‘5‘;531 ¥+ ..., 2

where the derivatives are evaluated at ¥ = 0, Equation (12) may
be thought of as an expression for Cy as a polynomial in ¥ with the
derivatives - or coefficients - as functions of angle of aitack,

At the onset of the test program it was hoped that the Magnus
effect would be linear with the reduced i'requency and, therefore,
Equation (12) could be rewritten as

AC. (n)
Cylo, B) = 3-61" v . (13)

In the case of the tests of the split-skirt stabilizer (configuration
C) the Magnus force and moments were found to be linear with the
reduced spin rate, However, for all other configurations - fixed
and freely-spinning cruciform stabilizers - the Magnus effect was
nonlinear in the reduced frequency as well as the angle of attack,
Thus, in the case of the cruciform configurations it was necessary

to present the yaw-force and yawing-moment coefficients as functie-s
of the reduced frequency.

DISCUSSION OF RESULTS

Figures 10 to 110 contain the entire collection of Magnus
data obtained on the M823 Research Store, These data include
measurements made on the basic fixed cruciform configuration as

10
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well as configurations with the freely spinning cruciform, freely
spinning monoplane and the split-skirt stabilizers.

It was mentioned in the previous section that it was not
possible to linearize the Magnus moment, in spin rate, except in
the case of the split-skirt stabilizer. Thus, it is necessary to
express the yaw force and moment as functions of the reduced
spin rate.

Figures 10 through 20 present the yaw force as a function of
reduced spin rate “or Mach numbers of 0,70, 0.85 and 0.95 and over
an angle of atta-_ inge of from 0 to 20 degrees. Figures 21 ttrough
30 give the yaw-momeat coefficient versus reduced frequency over
the same range of values, If the reduced spin rate remains below
0.04, it would be possible to linearize the yaw-force and momert
measurements, Above a reduced spin rate of 0,06, especially at the
higher angles of attack, the nonlinearities in the Magnus force and
moment become evident, If the reduced spin rate is thought of
as being approximately the angle of attack due to roll rate
experienced by a fin panel, a reduced spin rate of 0.06 would
correspond to about 3.6 degrees of angle of attack, In exemining
the static measurements made earlier in the program (see Ref. (2)),
it is obvious that the normal force is linear with angle of attack
below 20 degrees. Thus, nonlinearities of the Magnus effect with
reduced spin rate must be explained through other than static
aerodynamics,

Evaluating the trends of Magnus measurements is difficult
because of the lack of quantitative understanding of the phenomenon,
Two theories for finned bodies have been advanced which deserve at
least passing mention here, One is the qualitative theory of Platou
(Ref. (3)) and the other is a quantitative theory due to Benton
(Ref. (4)). Both of these theories assume that the Magnus effect
originates entirely in the stabilizer. In other words, the
distortion of the bcundary layer on the forebody due to spin rate
of the forebody (considered by Martin in Ref., (1)) is ignored.

Platou points to the body-induced flow interference on the
leeward fin as the source for the Magnus effect, According to
this theory the pressure distribution on the leeward and windward
fins acts at right angles to the angle-cf-attack plane., Thus,

a decrease in the pressure distribution on the leeward fin (due
to forebody interference) means that there is a net force on the
body which acts normal to the angle-of-attack plane, For a
clockwise spin (viewed from the rear) the net force should be to
the right (or, in a positive direction).
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Benton's theory recognizes that the normal-force vectors on the

fins, which are instantaneously perpendicular to the angle-of-attack

plane, are not parallel (Ref., (4)). The result is a couple acting

to move the body vertex out of the angle-of-attack plane, Tke sign

of the couple is negative; that is, for a positive spin rate, the

couple tends to move the vertex to the left. Benton shows that

this couple is propcrtional to the angle of fin cant. The so~

called Benton Magnus mcment is identical to the yawing moment, due s
to differential aileron deflection which is familiar to aircraft

engineers, Since most of the fited cruciform Magnus measur:ments

present here are for the A30 configuration (zero fin cant), the -
appiication of Benton's theory is not appropriate.

Some of these Magnus measurements may be examined in 1ight
of the flow interference hypothesis of Platou., At low spin rates,
and at low angles of attack, the yaw moment is negative (see
for example Fig, 21 for » = 4,05 degrees)., Under the same conditions
the side force is also negative, This means that the Magnus center
of pressure is forward of the body midpoint (moment reference
center). As the reduced spin is increased above 0,06, the Magnus
center of pressure moves rearward, causing the moment to become
positive. According to the flow interference theory of Platou, the
Magnus force is positive to the right. The force on the forebody
should be to the left if consistency with measurements made on
spin-stabilized weapons (see Ref, (5)) for example) is to be
maintained. At higher angles of attack (Figs., 12 and 23), the
yaw force is large and negative, while the yaw moment is positive,
for small reduced spin rates, becoming negative for the higher
reduced spin rates, It appears difficult to make any real
evaluation of the flow-interference hypothesis at this point.

A positive yawing moment may be due either to a movement of
the forebody center of pressure, rearward, past the moment reference
center; or due to & positive force acting at (and due to) the
stabilizer rotation., It will be found, subsequently, that when a
modification is made to body geometry in the vicinity of the body
vertex, such as by the adding of a yaw probe, the sign of the
¥agnus force (and moment) will change, s

It seems that the effect of the forebody on the fins is far
more complex than simply causing a velocity defect through a wake, .
Adding to the above complexity the yaw force changes sign at a
Mach number of 0,95 (see Fig, 13).

Figures 31 through 58 present yaw-force and moﬁent measurements
over the same angle of attack and reduced spin-rate range. This
set of measurements was made at a total pressure of one atmosphere,

g 12
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and at essentially twice the Reynolds number. In this second set
of Magnus measurements the moment is positive up to a Mach number
of 0,85 (see Figs, 51 through 53), The Magnus force is still to
the left (or negative) so it may be concluded that either the Nagnus
force (due to the stabilizer) is negative, or that the Magous force
on the forebody domimates, Later, when the freely spinning crucifors
measurements are examined it will be seen that the Magnus or yaw

'Y force is positive; this seems to support the flow interference
theory. However, it will also be shown that the presence or absence
of the probe can drastically sffect the sign of the yaw force.

- Thus, it is not possible to entirely resolve even the qualitative
contribution of the stabilizer,

)\

One aspect of tbhe problem which can be examined is the relstive
magnitude of the forebody contribution to the overall Magnus force,
One fair assumption might be to regard the forebody flow as
unaffected by the flow field of the stabilizer, (The converse
would be 2 worse and, at times, an unacceptable assumption.} The
forebody ther might be likened to a spin-stabilized projectile.

Reference (5) is a compendium of Magnus measurements on
research projectile shapes, For a 7-caliber body at a Mach mumber
of 0,50, an angle of attack of 4 degrees aud a reduced spin rate
of 0.1, the yaw-force coefficient, Cy, is -0.,018, This value might
be compared with a value of -0,02 taken from Figure 37, Quite
obviously then a large contribution to the Magnus effect on a
fin-stabilized configuration comes from the forebody. This points
to the inadequacy of explaining the Magnus effect solely ir terms
of fin-flow interference (Ref. (3)) or fin cant (Ref, (4)),

Attention has been called to the effect of Mach number on tae
yaw forces and moments. To illustrate this effect Figuvres 59
through 62 have been prepared from the material given earlier, In
these figures the yaw force and moment are presented as direct
functions of the reduced Mach number, All of these data were taken
from six-degree angle-of-attack measurements, The data in Figures
59 and 60 were measured in a flow of one-half-atmosphere stagnation

: pressure, In Figures 61 .nd 62 the flow-stagnation pressure was

one atmosphere,

If one accepts the postulate that the Hagnus force on the
forebody is negative, or to the left (Refs, (1) and (4}), and on
the stabilizer positive, or to the right (Ref, (3)), then some
7 interesting conclusions may be drawn from Figures 59 and 60, At
the Mach number of 0,70 the net yaw force is negative bucv the
yaw moment is positive, According to the above postulate the
forebody Magnus force lominates, Further, this force acts aft of

13
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¥

sid-poiat mouent reference center if it is to give a positive
As the Nach mamber increases the lagnus center of pressure
This postulate is entirely consistent with measurements
bodies (Ref. (5)). .t a ¥ach number of 0.85 the
the stabilizer Wad increased, This increase
on the stabilizer, with increasing Mach rumber, is
nrasuremsests sade on the freely spicning stabilizer,
l oe discussed subsegquently. Since the fore-
S are nearly equal, but opposite in sign,
ive eonple shich is belag applied to tke body,
1ol~ee is slightly greater, the net force is negative
conrideradly reduced i magnitude over the same measurements
at Nack 0,70, As the Nach mumber increases to 0,95 the dagnus
center 3f preesure for the forebxiy moves further aft until it
ssarly coiacides with the center of pressure of the stabilizer

THl
%§§§§

i

4!
il
9,&.
%5

1
3

Im Yigures 61 and 62 essentially the same phenomenon is
observed,. Yigure 61 shous that the yaw force is always negative
even thowgh it decreases in magnitude as the Mach number increases,
The Nagaus force om the forebody is recognized as being essentially
viscoas im origim (Ref. (1)) and, therefore, should incrzase with
iscreasing Reypolds momber. On the other hand, the yaw force on
tae statilizer may be described, at least im part, by potential
flow methods (Ref. (4)). Thus, the stabilizer would not be
e-pected to be strongly influenced by viscous effects. Speculations,
suck as those above, are not conclusive; and their resolution must
amit more definitive experiments.

One >f the most unexpected aerodynamic imputs into this
cooperative free-fall research program has centered about the addition
of a yaw probe at the boldy vertex, Originally its presence was
expected to have negligible effect on the aerodynamic loads,

Attention was focused on its presence when free-i2ll telemetry records
o? body morion differed markedly from the computer predictions,
Subsequently, wind-tunnel measurements were made of the yaw force
and moment in the presence and absence of the yaw probe. Figures
63 and 64 indicate the influence of the probe on the A50 configura-
tiom at a Mach number <f 0,85, Clearly, the addition of the probe
changes the yaw force from negative to positive and the moment from
positive to negative, No adequate theory from fluid mechanics
presently exists to explain this change in sign, A bibliography,
susmarizinz work dopme in the area of vortex shedding, is given

by Reference (6).

14
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Figures 65 through 88 present the yaw force and moments as a
function of angle of attack, These figures also present Magnus
data on the A52 and A84 configurations,

Figures 89 through 94 present the yaw force and moment on the
freely spinning cruciform configurations at Mach numbers of 0,70,
0.85 and 0,95, It will be noted, immediately, that the yaw force
is positive -~ the sign which was predicted by the interference
theory. In making these tests the forebody was fixed to the balance
and only the stabilizer was allowed to spin Ireely. There is
clearly a decrease in the steady-state spin rate with increasing
angle of attack, Also, at small angles of attack the yaw force and
moment are weak functions of reduced frequency; but the dependency
of load on spin rate increases with angle of attack. Unforturately,
measurements were made at only two fin-cant angles (2 and 4 degrees)
so that it is difficult to draw any detailed conclusions regarding
the Magnus loads., These freely spinning cruciform measurements had
baen used earlier, to support speculations based upon the qualitative
flow-interference theory. Yet it was shown that, at least in the
case of the fixed cruciform stabilized configurations, the presence
of the yaw probe drastically changed the Magnus effect., Of course,
when Figures 63 and 64 were made the forebody was also spinning,
Unfortunately no measurements have been maie for the freely spinning
cruciform and monoplane configurations without a yaw-meter probe,

Figures 95 through 100 present yaw-force and moment measurements,
for the freely spinning monoplane stabilizer, at Mach numbers of
0,70, 0.85 and 0,95, These conditions are identical to those used
for testing the freely spinning cruciform (Figs, 89 through 94),
It might be of some advantage to compare the freely spinning monoplane
and cruciform configurations in order to determine what effect the
removal of two opposing stabilizer panels has on the Magnus character-
istics, This can be done by comparing the two configurations at
(say) a Mach number of 0,70, It will be noted that the Magnus force
on the monoplane stabilizer is somewhat larger than half of that
for the cruciform stabilizer,

Figures 89 through 10C present yaw-force and moment measurements
made on the freely spinning stabilizer, These figures should be
accepted oniy as indicators of trends and relative orders of
mnagnitude, Unfortunately there is only a sparse coverage of the
spin range (only two fin-cant angles) and irregular angle-of-attack
dependency, For this reason it is felt that further examination
of the Magnus characteristics for a freely spinning stabilizer
should be carried out before such measurements can be accepted,
quantitatively,

15
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Figures 101 through 110 give the Magnus characteristics of
the 10-degree split-skirt stabilized configuration st Mach numbers
of 0,70, 0,80, 0,85, 0,90 and 0,95, TYor corfiguratioas given
earlier in this report the Magnus measurements were presented
in teras of the yaw-force and moment coefficients, In the case of
the split-sxirt stabiliizer, the yaw coefficients exhibited sufficieat
linearity with spin rate so that it was possible to use only the
slopes as representative of tle Magnus effect., These slopes are
called the ¥agnus force and moment derivatives,

Lisesrity of the yaw force and moment with spin rate is not
too surprising, since at high rotational speeds the configuration
appears to be a body of revolution, It is interesting to note that
the Magnus force and moment derivatives, whea plotted versus angle
of attack, bave a rather sudden change in slope at an angle equal
to nesyr the petal half angle - 10 degrees in this case, If the
angle of attack of the weapon was below 10 degrees it would be
poszible to employ Equation (31) and obtain tbke second Magnus force
and moment derivatives,

CONCLUSIONS

This report has shown that it is possible to make meaningful
Magnus measurements on finned configurations at subsoaic and
transonic airspeeds,

In the operation of this test program certain difficuities
were encountered which were not anticipated at the onset of the
testing, First, the Magnus etfect on finned bodies was found to
be nonlinear with reduced spin rate. Initially, it was felt that,
hased upon linear aerodynamics, the yaw force and moment should be
quite linear within the range ¢f reduced spin rates used here,
The effect of fin-cant angle was not expected to be as severe as
measurements have indicated, Future work should include a comparison
between measurements made using the internal drive motor as a
power source and with fin cant. The freely spinning body configura-
tions have certain curious behavior characteristics vhich can be
resolved only through more tests using a larger number of fin-cant
angles, Further testing should also be done to investigate the
effect of forebody protuberances on the Magnus effect, In doing
this future work, certainly low-speed flow visualization studies
should be made, Finally, an adeauate assessment should be made of
the theoretical approaches to the Magnus effect problem, Since the
flow=interference hypothesis seems promising it is recommended that
a fruitful set of experiments might consist of a set of measurements
to determine the pressure distribution or a body fitted with a
spinning-cruciforn stabilizer,

16
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TABLE I
CONFIGURATIONS AND STABILIZERS

Fixed Cruciforms Tail, 8 = 0, 2, 4 Degrees
Free-Spinning Cruciform Tail, 8 = 2, 4 Degrees

Fixed Split-Skirt Tail, Skirt Angle 10 Degrees
Free-Spinning Split-Skirt Tail, Skirt Angle 10 Degrees
Fixed Split-Skirt Tail, Skirt Aagle 15 Degrees
Free-Spinning Split-Skirt Tail, Skirt Angle 15 Degrees

Free-Spinning Monoplane Tail, 6 = 2, 4 Degrees

18
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SPLIT SKIRT STABILIZER

CRUCIFORM SiABILIZER

FIG. 1 CONFIGURATIONS OF THE M823 FREE-FALL RESEARCH STORE
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FIG. 14 YAW FORCE COFFFICIENT VERSUS REDUCED SPIN RATE AS A FUNC~
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FIG.16 YAW FORCE COEFFICIENT VERSUS REDUCED SPIN RATE AS A FUNC-
TION OF ANGLE OF ATTACK FOR CONFIGURATION A80 AT A

MACH NUMBER OF 0.85 AND A REYNOLDS NUMBER OF 9,587 x 108

0.16




e - T T el e et T AT—— P 5 R PRI LY S AR

YAW FORCE COEFFICIENT, C

7
/

NOLTR 69-214

0.08

0.04
Qa=20.48 DEG

-0.08

|

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
REDUCED SPIN RATE, pd/2v
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WITH A TEN DEGREE SPLIT-SKIRT STABILIZER AND YAW PROBE AT A MACH NUMBER OF Q.85
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WITH A TEN DEGREE SPLIT-SKIRT STABILIZER AND YAW PROBE AT A MACH NUMBER OF 0.80
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